	EXAMEN DU BACCALAURÉAT	SESSION 2024	
RÉPUBLIQUE TUNISIENNE	ÉPREUVE PRATIQUE D'INFORMATIQUE		
Ministère de l'Éducation	Sections : Mathématiques, Sciences expérimentales et Sciences techniques		
	Coefficient de l'épreuve : 0.5	Durée: 1h	

Important :

Le candidat est appelé à créer, dans le répertoire **Bac2024**, un dossier de travail ayant comme nom son numéro d'inscription (6 chiffres) et dans lequel il doit enregistrer, au fur et à mesure, tous les fichiers solution à ce sujet.

Divisibilité par 7 (Méthode de Horner)

On se propose de concevoir une interface graphique permettant de saisir un nombre X formé de 5 à 20 chiffres, puis de vérifier s'il est divisible par 7 en utilisant le principe suivant :

Etape1 : Former, à partir du nombre **X**, un nouveau nombre **Y** en faisant correspondre à chaque chiffre de **X** le reste de sa division euclidienne par **7**.

Exemple X = 5 52 2 7 5 7 9 8 Ţ ↓ Ţ Y = 5 5 2 0 5 0 2 1

Etape2 : Former, à partir du nombre \mathbf{Y} , un nouveau nombre \mathbf{Z} en faisant correspondre à chaque tranche de deux chiffres de \mathbf{Y} (en commençant à partir de la droite), le <u>reste de sa division euclidienne</u> par 7.

Exer	nple
X 7	_

Y =	5	5 2	0 5	0 2	12	
	↓	\downarrow	\downarrow	\downarrow	Ļ	
Z =	5	3	5	2	5	

- En effet, pour la tranche 12 de Y, lui correspond dans Z la valeur 5 (reste de la division euclidienne de 12 par 7).

- De même pour les autres tranches.

- La dernière tranche se compose d'un seul chiffre car le nombre de chiffres de **Y** est impair.

Etape3 : Appliquer au nombre Z, la méthode de **Horner** définie par l'algorithme suivant de la fonction **Horner**(Z).

Fonction Horner(Z : Chaîne de caractères) : Entier		
DEBUT		T.D.O.L
$M \leftarrow 0$	Objet	Type/Nature
<i>Tant que Z <> "" Faire</i>	М	Entier
$CH \leftarrow Z[0]$	СН	Chaîne de caractères
$M \leftarrow (M * 2 + Valeur(CH)) Mod 7$		·
$Z \leftarrow Sous_chaine(Z, 1, Long(Z))$		
Fin Tant que		
Retourner M		
FIN		

Le nombre X est divisible par 7 lorsque la fonction Horner, appliquée au nombre Z, retourne la valeur zéro.

Travail demandé

1. Créer l'interface graphique illustrée dans la figure **Fig1** et l'enregistrer sous le nom **InterfaceHorner**. Cette interface contient les éléments suivants :

Page 1 sur 2

- Un label contenant le texte "Divisibilité par 7 (Méthode de Horner)",
- Un label contenant le texte "X=",
- Une zone de saisie pour la saisie du nombre X,
- Un label pour afficher un message,
- Un bouton intitulé "Vérifier".

Divisibilité par 7 (Méthode de Horner)
X=
Vérifier

- 2. Créer un programme en Python et l'enregistrer sous le nom DivHorner dans lequel on demande :
 - a. d'implémenter l'algorithme de la fonction Horner.
 - b. de développer une fonction Etape1(X) qui simule l'Etape1 pour retourner le nombre Y.
 - c. de développer une fonction Etape2(Y) qui simule l'Etape2 pour retourner le nombre Z.
 - d. de développer un module Play qui s'exécute suite à un clic sur le bouton "Vérifier" permettant :
 - de récupérer la valeur du nombre X saisi et de s'assurer de sa validité afin d'afficher le message adéquat via le **label** dédié à l'affichage, comme illustré dans la figure **Fig2**.
 - d'exploiter les fonctions **Etape1**, **Etape2** et **Horner** afin d'afficher le message adéquat via le **label** dédié à l'affichage, comme illustré dans les figures **Fig3** et **Fig4**.
 - e. d'exploiter l'annexe présentée ci-après tout en apportant les modifications nécessaires à l'intégration de l'interface graphique InterfaceHorner.

Annexe	
from PyQt5.uic import loadUi	
from PyQt5.QtWidgets import QApplication	
app = QApplication([])	
windows = loadUi (" Nom_Interface.ui ")	
windows.show()	
windows.Nom_Bouton.clicked.connect (Nom_Module)	
app.exec_()	

Grille d'évaluation

	Tâches	Nombre de points
1.	Création de l'interface InterfaceHorner.	3
2.	Création du programme DivHorner .	17 =
	a. Implémentation de la fonction Horner.	3
	b. Développement de la fonction Etape1 .	3.5
	c. Développement de la fonction Etape2.	4.5
	d. Développement du module Play.	4.5
	e. Exploitation de l'annexe.	1.5