RÉPUBLIQUE TUNISIENNE

Ministère de l'Éducation

Coefficient de l'épreuve: 0.5

EXAMEN DU BACCALAURÉAT

SESSION 2024

Sections:

Mathématiques, Sciences expérimentales et Sciences techniques

Coefficient de l'épreuve: 0.5

Durée: 1h

Important:

Le candidat est appelé à créer, dans le répertoire **Bac2024**, un dossier de travail ayant comme nom son numéro d'inscription (6 chiffres) et dans lequel il doit enregistrer, au fur et à mesure, tous les fichiers solution à ce sujet.

Transformation Powertrain

On se propose de concevoir une interface graphique permettant de saisir deux entiers N ($200 \le N \le 999999$) et M ($3 \le M \le 10$), puis d'afficher la **transformation Powertrain** de l'entier N ainsi que celles des M entiers consécutifs qui le suivent.

La **transformation Powertrain** d'un entier **X** consiste à générer un entier **Y** à partir des chiffres de **X**, en multipliant dans l'ordre chaque chiffre de rang impair élevé à la puissance du chiffre de rang pair.

Il est à noter que :

- Si le nombre de chiffres de X est impair alors le dernier chiffre est élevé à la puissance 1.
- Si un chiffre de rang impair est égal à **zéro** et il est suivi d'un **zéro** alors la puissance 0^0 sera remplacée par 1.

Exemples:

- Pour X = 523, le nombre généré est $Y = 5^2 \times 3^1 = 25 \times 3 = 75$
- Pour X = 160071, le nombre généré est $Y = 1^6 \times 0^0 \times 7^1 = 1 \times 1 \times 7 = 7$

Travail demandé

- 1. Créer l'interface graphique illustrée dans la figure Fig1 et l'enregistrer sous le nom InterfacePowertrain. Cette interface contient les éléments suivants :
 - Un label contenant le texte "Transformation Powertrain",
 - Un label contenant le texte "N=",
 - Une zone de saisie pour la saisie d'un entier N,
 - Un label contenant le texte "M=",
 - Une zone de saisie pour la saisie d'un entier M,
 - Un label pour afficher un premier message,
 - Un label pour afficher un deuxième message,
 - Un bouton intitulé "Transformer".

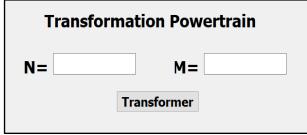


Fig 1

- 2. Créer un programme en Python et l'enregistrer sous le nom Powertrain dans lequel on demande :
 - a. d'implémenter l'algorithme suivant de la fonction **Puissance**(A, B) qui retourne la valeur d'un entier A élevé à la puissance B (notée A^B avec A et B deux entiers positifs).

Fonction Puissance(A, B : Entier) : Entier		
DEBUT	T.D.O.L	
<i>P</i> ← 1	Objet	Type/Nature
Pour K de 1 à B Faire	<i>P</i> , <i>K</i>	Entier
$P \leftarrow P * A$		
Fin Pour		
Retourner P		
FIN		

- **b.** de développer une fonction nommée **Transformer(X)** qui exploite la fonction **Puisance** pour déterminer la **transformation Powertrain** de l'entier **X**.
- c. de développer une fonction nommée Chercher(N, M), qui exploite la fonction Transformer pour former une chaîne de caractères contenant la transformation Powertrain de l'entier N ainsi que celles des M entiers consécutifs qui le suivent séparés par le caractère "-" (voir Fig3).
- d. de développer un module Play, qui s'exécute suite à un clic sur le bouton "Transformer" permettant :
 - de récupérer les valeurs des deux entiers saisis N et M et de s'assurer de leurs validités afin d'afficher le message adéquat via le **label** dédié à l'affichage, comme illustré dans la figure **Fig2**,
 - d'exploiter la fonction **Chercher** afin d'afficher les messages adéquats via les **labels** dédiés à l'affichage, comme illustré dans la figure **Fig3**.
- **e.** d'exploiter l'annexe présentée ci-dessous tout en apportant les modifications nécessaires à l'intégration de l'interface graphique **InterfacePowertrain**.

Transformation Powertrain		
N= 145	M= 2	
Transformer		
Veuillez respecter 200<=N<=999999 et 3<=M<=10		

Fig 2

Fig 3

from PyQt5.uic import loadUi from PyQt5.QtWidgets import QApplication app = QApplication([]) windows = loadUi ("Nom_Interface.ui") windows.show() windows.Nom_Bouton.clicked.connect (Nom_Module) app.exec_()

Grille d'évaluation

Tâches	Nombre de points
1. Création de l'interface InterfacePowertrain.	3
2. Création du programme Powertrain.	17 =
a. Implémentation de la fonction Puissance.	3
b. Développement de la fonction Transformer .	5.5
c. Développement de la fonction Chercher.	3.5
d. Développement du module Play.	3.5
e. Exploitation de l'annexe.	1.5