	EXAMEN DU BACCALAURÉAT	SESSION 2023	
RÉPUBLIQUE TUNISIENNE	ÉPREUVE PRATIQUE D'INFORMATIQUE		
©©© Ministère de l'Éducation	Sections :		
Willistere de l'Education	Mathématiques, Sciences expérimentales et Sciences techniq		
	Coefficient de l'épreuve : 0.5	Durée : 1h	

Important:

- 1. Une solution modulaire au problème posé est exigée.
- 2. Dans le répertoire **Bac2023**, créez un dossier de travail ayant comme nom votre numéro d'inscription (6 chiffres) et dans lequel vous devez enregistrer, au fur et à mesure, tous les fichiers solution à ce sujet.

Rotation - Miroir

On se propose de concevoir une interface graphique permettant de saisir une chaîne de caractères **ch** et de la crypter en utilisant le principe suivant :

Etape 1 : Rotation 13

Effectuer, pour chaque caractère de ch, une rotation de 13 caractères dans l'ordre alphabétique en appliquant la formule Chr(97 + (Ord(ch[i]) – 97 + 13) Mod 26) pour obtenir le caractère correspondant.

> Etape 2 : Miroir

Transformer la chaîne de caractères obtenue à l'issue de l'Etape 1 en son miroir. C'est-à-dire permuter le premier caractère avec le dernier, le deuxième caractère avec l'avant dernier et ainsi de suite.

Exemple:

Pour **ch** = "**algo**"

\triangleright Etape 1: Rotation 13

- le caractère "**a**" sera crypté en "**n**". En effet, Chr(97+(Ord("**a**")-97+13) Mod 26) = Chr(110) qui correspond au caractère "**n**"
- le caractère "**l**" sera crypté en "**y**". En effet, Chr(97+(Ord("**l**")-97+13) Mod 26) = Chr(121) qui correspond au caractère "**y**".
- le caractère "g" sera crypté en "t". En effet, Chr(97+(Ord("g")-97+13) Mod 26) = Chr(116) qui correspond au caractère "t".
- le caractère "**o**" sera crypté en "**b**". En effet, Chr(97+(Ord("**o**")-97+13) Mod 26) = Chr(98) qui correspond au caractère "**b**".

D'où le résultat de l'étape 1 est "nytb"

\triangleright Etape 2 : Miroir

Le miroir de la chaîne "nytb" est "btyn"

Donc, le cryptage de la chaîne "algo" en appliquant le principe ci-dessus est "btyn"

L'interface graphique à concevoir contient les éléments suivants, comme l'illustre la capture d'écran ci-dessous :

- Un label contenant le texte "Rotation Miroir"
- Un label contenant le texte "Introduire une chaîne : "
- Une zone de saisie pour la saisie d'une chaîne
- Un label pour afficher le résultat
- Un bouton intitulé "**Crypter**"

Rotation - Miroir		
Introduire une chaine :		
Crypter		

Travail demandé:

- 1) Concevoir l'interface graphique présentée précédemment et l'enregistrer sous le nom **InterfaceRotationMiroir**.
- 2) Créer un programme Python et l'enregistrer sous le nom **RotationMiroir**, dans lequel, il est demandé :
 - a) d'implémenter l'algorithme suivant de la fonction **Rotation** qui permet de retourner le résultat de l'étape 1.

Fonction Rotation (ch : Chaîne de caractères) : Chaîne de caractères

DEBUT

res←""

Pour i de 0 à Long(ch)-1 Faire

res←res + Chr(97 + (Ord(ch[i]) – 97 + 13) Mod 26)

Fin Pour

Retourner (res)

FIN

Déclaration des objets
Objet | Type/Nature

Objet	Type/Nature	
i	Entier	
res	Chaîne de	
	caractères	

- b) de développer une fonction nommée **Miroir** (**ch**) qui permet de retourner le miroir d'une chaîne de caractères **ch**.
- c) de développer un module Play, qui s'exécute suite à un clic sur le bouton "Crypter", permettant :
 - de récupérer la chaîne **ch** saisie. <u>La chaîne **ch** doit être non vide, de longueur inférieure à **10** et contient seulement des lettres alphabétiques en minuscule.</u>
 - de déterminer la chaîne cryptée en utilisant les deux fonctions **Rotation** (ch) et **Miroir** (ch) et d'afficher le résultat via le **label** dédié à l'affichage dans l'interface graphique **InterfaceRotationMiroir**.
- d) d'ajouter les instructions permettant d'exploiter l'interface graphique intitulée **InterfaceRotationMiroir** en se référant à l'annexe ci-après.
 - *N.B.*: l'affichage doit être conforme aux exemples d'exécutions suivants :

Exemples d'exécutions :

<u>Annexe</u>
from PyQt5.uic import loadUi
from PyQt5.QtWidgets import QApplication
app = QApplication([])
windows = loadUi (" Nom_Interface.ui ")
windows.show()
windows.Nom_Bouton.clicked.connect (Nom_Module)
app.exec_()

Grille d'évaluation

Tâches	Nombre de points
Conception de l'interface "InterfaceRotationMiroir"	4 pts
Création et enregistrement du programme "RotationMiroir"	1 pt
Implémentation de la fonction "Rotation"	3 pts
Développement de la fonction "Miroir"	3 pts
Développement du module "Play"	4 pts
Ajout des instructions de l'exploitation de l'interface	3 pts
Modularité et cohérence	2 pts